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Abstract

A discrete method is proposed for analyzing the natural vibration problem of rectangular plates with a line hinge. The

fundamental differential equations and the solutions of these equations are derived for two parts of the plate, which are

obtained by dividing the plate along the line hinge. By transforming these equations into integral equations, and using

numerical integration and the continuous conditions along the line hinge, the solutions of the whole plate can be expressed

by the unknown quantities on the boundary and the quantities of the rotation along the hinge. The Green function of the

deflection problem is used to obtain the characteristic equation of the free vibration. The effects of the position of the line

hinge, the aspect ratio, the thickness ratio and the boundary condition on the natural frequency parameters are considered.

By comparing the numerical results obtained by the present method with those previously published, the efficiency and

accuracy of the present method are investigated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The plates with hinge line are often used in engineering as structural elements, such as the boarding
platforms of ships, folded gates and chairs. In order to avoid the resonance and ensure the safety of the
structures, the study on the vibration problem of these plates is very important. But comparing the free
vibration study of plates with complicated cases, such as the plates with point supports [1–4] and the plates
with line supports [5–8], the free vibration study of the plates with a line hinge is rather limited. Wang et al. [9]
studied the vibration of plates with an internal line hinge by using the Ritz method. The Kirchhoff plate theory
was used, so the numerical results were given only for thin plates in which shear stresses were ignored. Xiang
and Reddy [10] first provided the exact solutions of natural vibration of rectangular plates by using the L�evy
type solution combined with the state-space technique. The abundant solutions were presented. Because the
L�evy type solution was used, the exact solutions were only suitable for the plates with two parallel simply
supported edges.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In this paper, a discrete method [11] is used for analyzing the free vibration of rectangular plates with a line
hinge. Thin and moderately thick rectangular plates with various boundary conditions are considered. Basing
the first shear deformation theory, the fundamental differential equations of a plate are established for the two
parts of the plate obtained by dividing the plate along the hinge. By transforming these equations into integral
equations and using numerical integration, the solutions are obtained at the discrete points. Furthermore, by
choosing the integral area in an appointed order, the solutions are only related to the unknown quantities on
the boundary and the quantities of the rotation along the hinge. That makes the number of unknown
quantities decrease greatly. The Green function of the deflection problem is used to obtain the characteristic
equation of the free vibration. The efficiency and accuracy of the present method for the rectangular plates
with line hinge are investigated by comparing the present results with those reported early. Some new
numerical results are given for moderately thick plates with a line hinge and various boundary conditions. The
effects of the position of the hinge, the aspect ratio, the thickness ratio and the boundary conditions on the
frequency parameters are discussed.

2. Fundamental differential equations

Fig. 1 shows a rectangular plate of length a, width b, density r with a line hinge. An xyz coordinate system is
used in the present study with its x2y plane contained in the middle plane of the rectangular plate, the z-axis
perpendicular to the middle plane of the plate and the origin at one of the corners of the plate. The hinge is
parallel to the edges in y-direction and divides the plate into two parts denoted as parts K ¼ 1 and 2.

In this paper, the deflection w, the rotations yx; yy, the shear forces Qx, Qy, the twisting moment Mxy and
the bending moments Mx, My are used as variables.

Along the hinge, the plate is divided into two parts. The fundamental differential equations of a part of the
plate having a concentrated load P at a point ðxq; yrÞ are as follows [11]:

qQðKÞx

qx
þ

qQðKÞy

qy
þ Pdðx� xqÞdðy� yrÞ ¼ 0, (1a)

qM ðKÞ
xy

qx
þ

qM ðKÞ
y

qy
�QðKÞy ¼ 0, (1b)

qM ðKÞ
x

qx
þ

qM ðKÞ
xy

qy
�QðKÞx ¼ 0, (1c)
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Fig. 1. Rectangular plate with a line hinge.
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qyðKÞx
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qy
¼

MðKÞ
x

D
, (1d)

qyðKÞy

qy
þ n

qyðKÞx

qx
¼

MðKÞ
y

D
, (1e)

qyðKÞx

qy
þ

qyðKÞy

qx
¼

2

ð1� nÞ

M ðKÞ
xy

D
, (1f)

qwðKÞ

qx
þ yðKÞx ¼

QðKÞx

Gts

, (1g)

qwðKÞ

qy
þ yðKÞy ¼

QðKÞy

Gts

, (1h)

where the superscript K ð¼ 1; 2Þ denotes the Kth part, D ¼ Eh3=ð12ð1� n2ÞÞ is the bending rigidity; E and G

are modulus and shear modulus of elasticity, respectively; n is Poisson’s ratio; h is the thickness of plate;
ts ¼ h=1:2; dðx� xqÞ and dðy� yrÞ are Dirac’s delta functions.

By introducing the non-dimensional expressions

½X
ðKÞ
1 ;X ðKÞ2 � ¼

a2

D0ð1� n2Þ
½QðKÞy ;QðKÞx �; ½X

ðKÞ
3 ;X ðKÞ4 ;X ðKÞ5 � ¼

a

D0ð1� n2Þ
½M ðKÞ

xy ;M
ðKÞ
y ;M ðKÞ

x �,

½X
ðKÞ
6 ;X ðKÞ7 ;X ðKÞ8 � ¼ ½y

ðKÞ
y ; yðKÞx ;wðKÞ=a�,

Eqs. (1a)–(1h) can also be expressed as the following simple systemized equation:

X8
s¼1

F 1ts

qX ðKÞs

qz
þ F2ts

qX ðKÞs

qZ
þ F3tsX

ðKÞ
s

� �
þ PdðZ� ZqÞdðz� zrÞd1t ¼ 0 ðt ¼ 128Þ, (2)

where m ¼ b=a; I ¼ mð1� n2Þðh0=hÞ3; J ¼ 2mð1þ nÞðh0=hÞ3; T ¼ ðð1þ nÞ=5Þðh0=aÞ2ðh0=hÞ; P ¼ Pa=ðD0ð1� n2ÞÞ;
D0 ¼ Eh3

0=ð12ð1� n2ÞÞ is the standard bending rigidity; h0 is the standard thickness of the plate; k ¼ 5
6
is the

shear correction factor; dðZ� ZqÞ and dðz� zrÞ are Dirac’s delta functions; d1t is Kronecker’s delta; F 1ts, F2ts

and F3ts are given in Appendix A.

3. Discrete Green function

As given in Ref. [11], by dividing a rectangular plate vertically into m equal-length divisions and
horizontally into n equal-length divisions as shown in Fig. 2, the plate can be considered as a group of discrete
points which are the intersections of the ðmþ 1Þ-vertical and ðnþ 1Þ-horizontal dividing lines. To describe the
present method conveniently, the rectangular area, 0pZpZi, 0pzpzj, corresponding to the arbitrary
intersection ði; jÞ as shown in Fig. 2 is denoted as the area ½i; j�, the intersection ði; jÞ denoted by� is called the
main point of the area ½i; j�, the intersections denoted by � are called the inner dependent points of the area,
and the intersections denoted by � are called the boundary dependent points of the area.

By integrating Eq. (2) over the area ½i; j� and applying the trapezoidal integration rule, the simultaneous

equation for the unknown quantities X
ðKÞ
sij ¼ X ðKÞs ðZi; zjÞ at the main point ði; jÞ of the area ½i; j� is obtained as

follows:

X8
s¼1

F 1ts

Xi

k¼0

bikðX
ð1Þ
skj � X

ð1Þ
sk0Þ þ F2ts

Xj

l¼0

bjlðX
ð1Þ
sil � X

ð1Þ
s0lÞ þ F3ts

Xi

k¼0

Xj

l¼0

bikbjlX
ð1Þ
skl

( )

þ Puiqujrd1t ¼ 0 for the first part, (3a)
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Fig. 2. Discrete points on a rectangular plate.
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X8
s¼1

F1ts

Xi

k¼c

bikðX
ð2Þ
skj � X

ð2Þ
sk0Þ þ F 2ts

Xj

l¼0

bjlðX
ð2Þ
sil � X

ð2Þ
scl Þ þ F 3ts

Xi

k¼c

Xj

l¼0

bikbjlX
ð2Þ
skl

( )

þ Puiqujrd1t ¼ 0 for the second part, (3b)

where t ¼ 128, c ¼ ðhc=aÞm, bik ¼ aik=m; bjl ¼ ajl=n; aik ¼ 1� ðd0k þ dck þ dikÞ=2; ajl ¼ 1� ðd0l þ djlÞ=2;

i ¼ 12m; j ¼ 12n; uiq ¼ uðZi � ZqÞ; ujr ¼ uðzj � zrÞ.

By retaining the quantities at main point ði; jÞ on the left-hand side of the equation, putting other quantities
on the right-hand side and using the matrix transition, the solution X pij of Eqs. (3a) and (3b) are obtained as
follows:

X
ð1Þ
pij ¼

X8
t¼1

Xi

k¼0

bikApt½X
ð1Þ
tk0 � X

ð1Þ
tkjð1� dikÞ� þ

Xj

l¼0

bjlBpt½X
ð1Þ
t0l � X

ð1Þ
til ð1� djlÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklX
ð1Þ
tklð1� dikdjlÞ

)
� Ap1Puiqujr for the first part, (4a)

X
ð2Þ
pij ¼

X8
t¼1

Xi

k¼c

bikApt½X
ð2Þ
tk0 � X

ð2Þ
tkjð1� dikÞ� þ

Xj

l¼0

bjlBpt½X
ð2Þ
tcl � X

ð2Þ
til ð1� djlÞ�

(

þ
Xi

k¼c

Xj

l¼0

bikbjlCptklX
ð2Þ
tklð1� dikdjlÞ

)
� Ap1Puiqujr for the second part, (4b)

where p ¼ 128, Apt, Bpt and Cptkl are given in Appendix A.

In Eq. (4a), the quantity X
ð1Þ
pij is not only related to the quantities X

ð1Þ
tk0 and X

ð1Þ
t0l at the boundary dependent

points but also the quantities X
ð1Þ
tkj, X

ð1Þ
til and X

ð1Þ
tkl at the inner dependent points. In Eq. (4b), the quantity X

ð2Þ
pij is

not only related to the quantity X
ð2Þ
tk0 at the boundary dependent points and the quantity X

ð2Þ
tcl at the points on

the hinged line but also the quantities X
ð2Þ
tkj , X

ð2Þ
til and X

ð2Þ
tkl at the inner dependent points. The number of the

unknown quantities is rather large. In order to reduce the unknown quantities, the area ½i; j� is spread
according to the regular order as ½1; 1�; ½1; 2�; . . . ; ½1; n�; ½2; 1�; ½2; 2�; . . . ; ½2; n�; . . . ; ½m; 1�; ½m; 2�; . . . ; ½m; n�. With

the spread of the area according to the abovementioned order, the quantities X
ðKÞ
tkj , X

ðKÞ
til and X

ðKÞ
tkl at the inner

dependent points can be eliminated by substituting the obtained results into the corresponding terms of the

right-hand side of Eqs. (4a) and (4b). By repeating this process, the quantity X
ð1Þ
pij at the main point in the first
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part is only related to the quantities X
ð1Þ
rk0 (r ¼ 1; 3; 4; 6; 7; 8) and X

ð1Þ
s0l (s ¼ 2; 3; 5; 6; 7; 8) at the boundary

dependent points. The quantity X
ð2Þ
pij at the main point in the second part is only related to the quantities X

ð2Þ
rk0

(r ¼ 1; 3; 4; 6; 7; 8) at the boundary dependent points and X
ð2Þ
scl (s ¼ 2; 3; 5; 6; 7; 8) at points on the hinged

line. Therefore, the number of the unknown quantities is reduced greatly. Based on the above consideration,
Eqs. (4a) and (4b) are rewritten as follows:

X
ð1Þ
pij ¼

X6
d¼1

Xi

f¼0

a
ð1Þ
pijfdX

ð1Þ
rf 0 þ

Xj

g¼0

b
ð1Þ

pijgd X
ð1Þ
s0g

( )
þ q
ð1Þ
pij P for the first part, (5a)

X
ð2Þ
pij ¼

X6
d¼1

Xi

f¼c

a
ð2Þ
pijfdX

ð2Þ
rf 0 þ

Xj

g¼0

b
ð2Þ

pijgdX ð2Þscg

( )
þ q
ð2Þ
pij P for the second part, (5b)

where a
ðKÞ
pijfd , b

ðKÞ

pijgd and q
ðKÞ
pij ðK ¼ 1; 2Þ are given in Appendix B.

The boundary conditions at Z ¼ 0; 1; z ¼ 0; 1 are

X 5 ¼ 0; X 6 ¼ 0; X 8 ¼ 0 for the simply supported edge at Z ¼ 0; 1, (6a)

X 6 ¼ 0; X 7 ¼ 0; X 8 ¼ 0 for the clamped edge at Z ¼ 0; 1, (6b)

X 2 ¼ 0; X 3 ¼ 0; X 5 ¼ 0 for the free edge at Z ¼ 0; 1, (6c)

X 4 ¼ 0; X 7 ¼ 0; X 8 ¼ 0 for the simply supported edge at z ¼ 0; 1, (6d)

X 6 ¼ 0; X 7 ¼ 0; X 8 ¼ 0 for the clamped edge at z ¼ 0; 1, (6e)

X 1 ¼ 0; X 3 ¼ 0; X 4 ¼ 0 for the free edge at z ¼ 0; 1. (6f)

The continuity conditions at the line hinge are given as

X
ð1Þ
2cj ¼ X

ð2Þ
2cj ; X

ð1Þ
3cj ¼ X

ð2Þ
3cj ; X

ð1Þ
5cj ¼ X

ð2Þ
5cj ¼ 0; X

ð1Þ
6cj ¼ X

ð2Þ
6cj ; X

ð1Þ
8cj ¼ X

ð2Þ
8cj . (7)

By using the above conditions and the continuity conditions, the unknown quantities in Eqs. (5a) and (5b)
can be determined and the discrete solutions can be obtained. The solution of deflection is used as Green
function to obtain the characteristic equation of the free vibration.
4. Characteristic equation

By applying the Green function wðx0; y0; x; yÞ=P which is the displacement at a point ðx0; y0Þ of a plate with a
concentrated load P at a point ðx; yÞ, the displacement amplitude ŵðx0; y0Þ at a point ðx0; y0Þ of the rectangular
plate with a line hinge during the free vibration is given as follows:

ŵðx0; y0Þ ¼

Z a

0

Z b

0

rho2ŵðx; yÞ½wðx0; y0; x; yÞ=P�dxdy, (8)

where r is the mass density of the plate material.
By using the trapezoidal integration rule and the following non-dimensional expressions:

l4 ¼
r0h0o2a4

D0ð1� n2Þ
; k ¼ 1=ðml4Þ; HðZ; zÞ ¼

rðx; yÞ
r0

hðx; yÞ

h0
,

W ðZ; zÞ ¼
ŵðx; yÞ

a
; GðZ0; z0; Z; zÞ ¼

wðx0; y0;x; yÞ

a

D0ð1� n2Þ
Pa

,
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where r0 is the standard mass density, the characteristic equation is obtained from Eq. (8) as

K00 K01 K02 . . . K0m

K10 K11 K12 . . . K1m

K20 K21 K22 . . . K2m

..

. ..
. ..

. . .
. ..

.

Km0 Km1 Km2 . . . Kmm

�������������

�������������
¼ 0, (9)

where

Kij ¼ bmj

bn0Hj0Gi0j0 � kdij bn1Hj1Gi0j1 bn2Hj2Gi0j2 � � � bnnHjnGi0jn

bn0Hj0Gi1j0 bn1Hj1Gi1j1 � kdij bn2Hj2Gi1j2 � � � bnnHjnGi1jn

bn0Hj0Gi2j0 bn1Hj1Gi2j1 bn2Hj2Gi2j2 � kdij � � � bnnHjnGi2jn

..

. ..
. ..

. . .
. ..

.

bn0Hj0Ginj0 bn1Hj1Ginj1 bn2Hj2Ginj2 � � � bnnHjnGinjn � kdij

2
66666664

3
77777775

in which i ¼ 0; 1; . . . ;m; j ¼ 0; 1; . . . ; n.
From Eq. (9), the natural frequency parameter l can be obtained by using the QR double-step method and

the eigenvectors can be computed by inverse iteration.

5. Numerical results

To investigate the validity of the proposed method, the frequency parameters are given for rectangular
plates with a line hinge at x ¼ hc (shown in Fig. 1). h0 ¼ h and r0 ¼ r are used in the numerical calculation. In
all tables and figures, the symbols F, S, and C denote free, simply supported and clamped edges. Four symbols
such as CSFS delegate the boundary conditions of the plate, the first indicating the conditions at x ¼ 0, the
second at y ¼ 0, the third at x ¼ a and the fourth at y ¼ b. All the convergent values of the frequency
parameters are obtained for the plates by using Richardson’s extrapolation formula for two cases of divisional
numbers m ( ¼ n). Some of the results are compared with those reported previously.

5.1. Thin rectangular plates with a line hinge

In order to examine the convergency, numerical calculation is carried out by varying the number of
divisions m and n for an SSSS square plate with a line hinge at x ¼ a=2. The lowest six natural frequency
4

6
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 12

 14

 16

 18

4 6 8  10  12  14

1st

2nd
3rd
4th
5th
6th

λ

Fig. 3. The natural frequency parameter l versus the divisional number m ð¼ nÞ for the SSSS square plate with a line hinge at x ¼ a=2.
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Table 1

Natural frequency parameter l for SSSS rectangular plates with a line hinge (h=a ¼ 0:01).

b=a hc=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 1/3 Present 6.864 8.539 11.308 12.837 13.092 13.880

Ref. [10] 6.869 8.547 11.324 12.852 13.134 13.899

1/2 Present 6.829 8.879 10.505 12.811 13.952 14.025

Ref. [10] 6.834 8.884 10.527 12.829 14.043 14.043

1.0 0.1 Present 4.336 6.134 6.992 8.530 8.561 9.894

Ref. [10] 4.335 6.132 6.994 8.507 8.585 9.909

0.3 Present 4.092 6.244 6.878 8.470 9.790 9.810

Ref. [10] 4.093 6.245 6.880 8.473 9.804 9.825

0.5 Present 4.011 6.826 7.020 8.654 8.876 9.763

Ref. [10] 4.012 6.829 7.022 8.663 8.879 9.786
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parameters of the plate are shown in Fig. 3. It can be found that the numerical results converge monotonously
from above with increase in the divisional number and the results of the divisional numbers m ð¼ nÞ of 12 and
14 are almost same. So it is suitable to obtain the convergent results of frequency parameter by using
Richardson’s extrapolation formula for two cases of divisional numbers m ð¼ nÞ of 12 and 14. By repeating
the above procedure, the suitable number of divisions m ð¼ nÞ can be determined for the other plates.

Table 1 shows the numerical values for the lowest six natural frequency parameter l of SSSS rectangular
plates with a line hinge. The cases of hc=a ¼ 1

3
; 1
2
and 0:1; 0:3; 0:5 are considered for the plates with aspect ratios

b=a ¼ 0:5 and 1:0, respectively. The exact results obtained by Xiang and Reddy [10] are also shown in the
table. It can be seen that the present results agree well with exact results. The mode shapes of the lowest six
modes of the above plates are shown in Fig. 4. From Fig. 4, the discontinuity of rotation yx can be seen and
some changes of mode order for the plate with b=a ¼ 1:0 can be found.

Tables 2–4 show the numerical values for the lowest six natural frequency parameter l of CSCS, CSFS and
CSSS rectangular plates with a line hinge and aspect ratio b=a ¼ 0:5; 1:0. The cases of hc ¼

1
3
; 1
2
; 0:1; 0:3; 0:5 are

considered for CSCS plates. The cases of hc ¼
1
3
; 1
2
; 2
3
; 0:3; 0:5; 0:7 are considered for CSFS and CSSS plates.

These numerical results are in good agreement with those of Xiang and Reddy [10]. The mode shapes of the
lowest six modes of CSFS plates are shown in Fig. 5. As shown in Fig. 4, the discontinuity of rotation yx and
some changes of mode order can be found and the vertical nodal lines will move to the free edge. That shows
the vertical nodal lines have the trend to be close to the edge with less boundary constraint.

Table 5 shows the numerical values for the lowest six natural frequency parameter l of CCCC, CSCC,
SSCC and CSFC square plates with a line hinge. The boundary conditions of these plates are not limited to
two opposite edges simply supported. The cases of the plates with hc=a ¼ 0:1; 0:3; 0:5 are considered. The
results obtained by Wang et al. [9] using Ritz method are also shown in the table. The results of Ref. [9]� are
obtained from the table shown in Ref. [9] and those of Ref. [9]�� are obtained from the figure in Ref. [9]. But
differences between these results for the second frequency parameter are about 5 percent. The present results
agree well with those in Ref. [9]��.

5.2. Moderately thick rectangular plates with a line hinge

Table 6 shows the numerical values for the fundamental frequency parameter l of CSCS with a line hinge
and the thickness ratio h=a ¼ 1

5
; 1
7
; 1
10
; 1
12
; 1
15
; 1
60
; 1
100

. Five cases of the position of the line hinge with hc=a ¼

0:1; 0:2; 0:3; 0:4; 0:5 are considered. From this table, it can be noted that the present results are in good
agreement with those of Xiang and Reddy [10] for the plate with variable thickness ratio h=a.

Figs. 6 and 7 show the changes of the fundamental frequency parameter l with the thickness ratio a=h of
CSCS and SSSS plates, respectively. Five cases of the position of the line hinge with hc=a ¼ 0:1; 0:2; 0:3; 0:4; 0:5
are considered. From these figures, it can be found that the fundamental frequency parameter l increases with
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hc/a = 1 / 3

hc/a = 1 / 2

hc/a = 0.1

hc/a = 0.3

hc/a = 0.5

b/a = 0.5

b/a = 1.0

Fig. 4. Mode shapes for SSSS rectangular plates with a line hinge. (a) b=a ¼ 0:5; (b) b=a ¼ 1:0.

Table 2

Natural frequency parameter l for CSCS rectangular plates with a line hinge (h=a ¼ 0:01).

b=a hc=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 1/3 Present 7.209 9.196 12.358 12.923 14.144 14.464

Ref. [10] 7.215 9.210 12.390 12.942 14.171 14.536

1/2 Present 7.114 9.711 11.450 12.889 14.348 15.330

Ref. [10] 7.120 9.723 11.488 12.907 14.369 15.306

1.0 0.1 Present 5.181 7.355 8.255 9.700 10.082 11.301

Ref. [10] 5.181 7.356 8.260 9.704 10.096 11.328

0.3 Present 5.167 7.250 7.331 9.131 9.977 10.954

Ref. [10] 5.167 7.252 7.332 9.135 9.993 10.928

0.5 Present 4.769 7.111 8.313 9.710 9.906 9.954

Ref. [10] 4.770 7.114 8.318 9.714 9.923 9.969

M. Huang et al. / Journal of Sound and Vibration 322 (2009) 227–240234
increase in the ratio a=h for all the cases. For the plates with the ratio a=h smaller than 20, the increase is
obvious. For the plates with the ratio a=h larger than 40, the fundamental frequency parameter l almost keeps
constant. It can also be found that the highest fundamental frequency parameter of the plates with various
position of the line hinge can be found at hc=a ¼ 0:2 for CSCS plate and hc=a ¼ 0:1 for SSSS plate. It shows
the optimal location of the line hinge changes for the plates with different boundary conditions but does not
change for the plates with various thickness ratio.
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Table 3

Natural frequency parameter l for CSFS rectangular plates with a line hinge (h=a ¼ 0:01).

b=a hc=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 1/3 Present 6.442 7.638 9.705 12.583 12.675 13.246

Ref. [10] 6.444 7.648 9.719 12.598 12.722 13.269

1/2 Present 6.412 7.646 10.084 11.795 12.556 13.290

Ref. [10] 6.416 7.651 10.098 11.842 12.575 13.308

2/3 Present 6.389 7.868 9.466 12.516 12.534 13.397

Ref. [10] 6.392 7.875 9.481 12.551 12.560 13.415

1.0 0.3 Present 3.555 5.417 6.444 7.575 7.682 9.565

Ref. [10] 3.555 5.416 6.446 7.578 7.682 9.496

0.5 Present 3.540 5.050 6.410 7.644 8.475 9.450

Ref. [10] 3.540 5.047 6.413 7.642 8.480 9.467

0.7 Present 3.503 5.446 6.383 7.248 7.904 9.471

Ref. [10] 3.504 5.484 6.387 7.243 7.903 9.439

Table 4

Natural frequency parameter l for CSSS rectangular plates with a line hinge (h=a ¼ 0:01).

b=a hc=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

0.5 1/3 Present 7.059 8.774 11.693 12.886 13.978 14.119

Ref. [10] 7.063 8.785 11.720 12.903 14.002 14.213

1/2 Present 6.959 9.225 11.040 12.847 14.170 14.424

Ref. [10] 6.964 9.232 11.069 12.865 14.189 14.521

2/3 Present 6.975 8.961 11.790 12.868 13.534 14.036

Ref. [10] 6.980 8.970 11.813 12.885 13.586 14.057

1.0 0.3 Present 4.778 6.734 7.090 8.748 9.905 10.061

Ref. [10] 4.777 6.735 7.092 8.751 9.920 10.076

0.5 Present 4.381 6.957 7.509 9.223 9.468 9.833

Ref. [10] 4.382 6.959 7.511 9.226 9.479 9.847

0.7 Present 4.334 6.958 7.001 8.849 9.857 10.591

Ref. [10] 4.343 6.955 6.992 8.863 9.881 10.615
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Table 7 shows the numerical values for the lowest six natural frequency parameter l of moderately thick
SSSS, CCCC, CSCS, CSCC and CSFC rectangular plates with a line hinge and aspect ratio b=a ¼ 0:5; 1. The
cases of hc ¼

1
3
; 1
2
; 2
3
are considered for CSFS plates and the cases of hc=a ¼ 1

4
; 1
3
; 1
2
are considered for the other

plates. It can be seen that the boundary conditions, the aspect ratio and the position of the line hinge affect the
frequency parameter.
6. Conclusions

A discrete method is used for analyzing the free vibration problem of thin or moderately thick rectangular
plate with a line hinge and various boundary conditions. The plate is separated into two parts along the line
hinge and the continuous conditions along the hinge are used to obtain the solution of the whole plate. Green
function which is the solution of deflection of the bending problem of plate is used to obtain the characteristic
equation of the free vibration. The effects of the position of the line hinge, the aspect ratio, the thickness ratio
and the boundary condition on the natural frequency parameters of thin or moderately thick rectangular
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hc/a = 1/3

hc/a = 1/2

hc/a = 0.3

hc/a = 0.5

hc/a = 0.7

b/a = 0.5

b/a = 1.0

Fig. 5. Mode shapes for CSFS rectangular plates with a line hinge. (a) b=a ¼ 0:5; (b) b=a ¼ 1:0.

Table 5

Natural frequency parameter l for square plates with a line hinge and various boundary conditions (h=a ¼ 0:01).

BC hc=a References Mode sequence number

1st 2nd 3rd 4th 5th 6th

CCCC 0.1 Present 5.860 8.500 8.531 10.377 11.412 11.437

Ref. [9]� 5.997 8.069 8.551 – – –

Ref. [9]�� 5.9 8.5 8.6 – – –

0.3 Present 5.833 7.669 8.448 9.911 11.088 11.343

Ref. [9]� 5.643 8.102 8.398 – – –

Ref. [9]�� 5.8 7.7 8.5 – – –

0.5 Present 5.566 8.343 8.553 10.148 10.382 11.293

Ref. [9]� 5.644 7.964 8.432 – – –

Ref. [9]�� 5.7 8.4 8.6 – – –

CSCC 0.1 Present 5.473 7.921 8.362 10.013 10.746 11.354

0.3 Present 5.449 7.477 7.826 9.490 10.653 11.016

0.5 Present 5.143 7.765 8.417 10.022 10.050 10.666

SSCC 0.1 Present 5.043 6.774 7.744 9.270 9.280 10.645

0.3 Present 4.786 7.119 7.620 9.248 10.560 10.657

0.5 Present 4.830 7.631 7.660 9.585 9.572 10.597

CSFC 0.1 Present 4.124 5.846 7.173 8.361 8.538 10.317

0.3 Present 4.180 5.675 7.171 7.704 8.144 9.879

0.5 Present 4.150 5.321 7.090 7.993 8.544 10.034
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Table 6

Fundamental frequency parameter l for CSCS square plates with a line hinge.

h=a References hc=a

0.1 0.2 0.3 0.4 0.5

1/5 Present 4.673 4.769 4.625 4.425 4.351

1/7 Present 4.893 5.006 4.839 4.599 4.512

1/10 Present 5.014 5.175 4.969 4.700 4.607

Ref. [10] 4.996 – 4.965 – 4.598

1/12 Present 5.125 5.305 5.078 4.786 4.687

1/15 Present 5.168 5.356 5.124 4.823 4.722

1/60 Present 5.177 5.374 5.162 4.866 4.763

1/100 Present 5.181 5.378 5.167 4.872 4.769

Ref. [10] 5.181 – 5.167 – 4.770

4

 4.5

5

 5.5

0  10  20  30  40  50  60

hc/a = 0.1

hc/a = 0.2

hc/a  = 0.3

hc/a  = 0.4
hc/a  = 0.5

λ

a/h

Fig. 6. Fundamental frequency parameters of CSCS square plates versus the thickness ratio a=h for various location of line hinge.
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 4.4

0  10  20  30  40  50  60

hc/a = 0.1
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hc/a  = 0.3
hc/a = 0.4
hc/a = 0.5
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a/h

Fig. 7. Fundamental frequency parameters of SSSS square plates versus the thickness ratio a=h for various location of line hinge.
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Table 7

Natural frequency parameter l for rectangular plates with a line hinge (h=a ¼ 0:2).

B.C. b=a hc References Mode sequence number

1st 2nd 3rd 4th 5th 6th

SSSS 0.5 1/4 Present 6.183 7.248 8.866 9.878 10.375 10.429

1/3 Present 6.149 7.343 9.033 9.865 10.179 10.344

1/2 Present 6.121 7.565 8.640 9.854 10.436 10.458

1.0 1/4 Present 3.917 5.576 6.181 7.247 7.954 8.166

1/3 Present 3.850 5.787 6.119 7.308 8.064 8.137

1/2 Present 3.808 6.119 6.280 7.546 7.564 8.128

CCCC 0.5 1/4 Present 7.322 8.016 9.251 10.240 10.637 10.678

1/3 Present 7.286 8.032 9.403 10.230 10.563 10.690

1/2 Present 7.251 8.220 9.023 10.220 10.637 10.740

1.0 1/4 Present 5.155 6.442 6.851 7.762 8.326 8.541

1/3 Present 5.025 6.464 6.801 7.786 8.507 8.572

1/2 Present 4.879 6.755 6.884 7.950 7.965 8.494

CSCS 0.5 1/4 Present 6.362 7.515 9.053 9.893 10.411 10.554

1/3 Present 6.293 7.549 9.213 9.877 10.278 10.408

1/2 Present 6.234 7.779 8.817 9.864 10.491 10.554

1.0 1/4 Present 4.727 6.294 6.361 7.514 8.213 8.285

1/3 Present 4.551 6.292 6.321 7.549 8.185 8.525

1/2 Present 4.351 6.232 6.766 7.779 7.875 8.158

CSCC 0.5 1/4 Present 6.818 7.780 9.147 10.064 10.566 10.594

1/3 Present 6.898 7.748 9.302 10.103 10.352 10.472

1/2 Present 6.755 7.995 8.918 10.057 10.596 10.621

1.0 1/4 Present 4.835 6.402 6.487 7.738 8.292 8.307

1/3 Present 4.800 6.376 6.600 7.649 8.376 8.548

1/2 Present 4.529 6.413 6.821 7.886 7.898 8.227

CSFC 0.5 1/3 Present 6.590 6.967 8.164 9.642 10.015 10.234

1/2 Present 6.343 6.876 8.188 9.367 9.877 10.167

2/3 Present 6.202 6.959 7.852 9.485 9.803 10.178

1.0 1/3 Present 3.864 4.927 6.157 6.774 6.848 8.106

1/2 Present 3.819 4.720 6.097 6.754 7.059 8.125

2/3 Present 3.743 4.875 6.050 6.331 6.785 7.836
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plates are considered. By comparing the numerical results obtained by the present method with those
previously published, the efficiency and accuracy of the present method are investigated.
Appendix A

F111 ¼ F124 ¼ F 133 ¼ F 156 ¼ F167 ¼ F188 ¼ 1, F 146 ¼ n, F 212 ¼ F223 ¼ F235 ¼ F 247 ¼ F 266 ¼ m, F257 ¼ mn,
F278 ¼ 1, F 321 ¼ F 332 ¼ �m, F345 ¼ F354 ¼ �I , F363 ¼ �J, F 372 ¼ �T , F377 ¼ 1, F 381 ¼ �mT , F386 ¼ m,
other F kts ¼ 0.

Ap1 ¼ gp1, Ap2 ¼ 0, Ap3 ¼ gp2, Ap4 ¼ gp3, Ap5 ¼ 0, Ap6 ¼ gp4 þ ngp5, Ap7 ¼ gp6, Ap8 ¼ gp7.
Bp1 ¼ 0, Bp2 ¼ mgp1, Bp3 ¼ mgp3, Bp4 ¼ 0, Bp5 ¼ mgp2, Bp6 ¼ mgp6, Bp7 ¼ mðngp1 þ gp5Þ, Bp8 ¼ gp8.
Cp1kl ¼ mðgp3 þ kklgp7Þ, Cp2kl ¼ mgp2 þ kklgp8, Cp3kl ¼ Jgp6, Cp4kl ¼ Iklgp4, Cp5kl ¼ Iklgp5, Cp6kl ¼ �mgp7,

Cp7kl ¼ �gp8, Cp8kl ¼ 0.
½gpk� ¼ ½gpk�

�1, g11 ¼ bii, g12 ¼ mbjj, g22 ¼ �mbij, g23 ¼ bii, g25 ¼ mbjj , g31 ¼ �mbij , g33 ¼ mbjj , g34 ¼ bii,
g44 ¼ �I ijbij, g46 ¼ bii,g47 ¼ mnbjj , g55 ¼ �I ijbij , g56 ¼ nbii, g57 ¼ mbjj, g63 ¼ �Jijbii, g66 ¼ mbjj, g67 ¼ bii,
g71 ¼ �mkijbij, g76 ¼ mbij , g78 ¼ bii, g82 ¼ �Hijbij,g87 ¼ bij , g88 ¼ bjj, other gpk ¼ 0, bij ¼ biibjj .
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Appendix B

a
ð1Þ
1i0i1 ¼ a

ð1Þ
3i0i2 ¼ a

ð1Þ
4i0i3 ¼ a

ð1Þ
6i0i4 ¼ a

ð1Þ
7i0i5 ¼ a

ð1Þ
8i0i6 ¼ 1, b

ð1Þ

20jj1 ¼ b
ð1Þ

30jj2 ¼ b
ð1Þ

50jj3 ¼ b
ð1Þ

60jj4 ¼ b
ð1Þ

70jj5 ¼ b
ð1Þ

80jj6 ¼ 1,

b
ð1Þ

30002 ¼ 0.

a
ð2Þ
1i0i1 ¼ a

ð2Þ
3i0i2 ¼ a

ð2Þ
4i0i3 ¼ a

ð2Þ
6i0i4 ¼ a

ð2Þ
7i0i5 ¼ a

ð2Þ
8i0i6 ¼ 1, b

ð2Þ

2cjj1 ¼ b
ð2Þ

3cjj2 ¼ b
ð2Þ

5cjj3 ¼ b
ð2Þ

6cjj4 ¼ b
ð2Þ

7cjj5 ¼ b
ð2Þ

8cjj6 ¼ 1,

b
ð2Þ

3c0c2 ¼ 0.

a
ð1Þ
pijfd ¼

X8
t¼1

Xi

k¼0

bikApt½a
ð1Þ
tk0fd � a

ð1Þ
tkjfd ð1� dkiÞ� þ

Xj

l¼0

bjlBpt½a
ð1Þ
t0lfd � a

ð1Þ
tilfd ð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptkla
ð1Þ
tklfd ð1� dkidljÞ

)
,

b
ð1Þ

pijgd ¼
X8
t¼1

Xi

k¼0

bikApt½b
ð1Þ

tk0gd � b
ð1Þ

tkjgd ð1� dkiÞ� þ
Xj

l¼0

bjlBpt½b
ð1Þ

t0lgd � b
ð1Þ

tilgd ð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklb
ð1Þ

tklgd ð1� dkidljÞ

)
,

q
ð1Þ
pij ¼

X8
t¼1

Xi

k¼0

bikApt½q
ð1Þ
tk0 � q

ð1Þ
tkjð1� dkiÞ� þ

Xj

l¼0

bjlBpt½q
ð1Þ
t0l � q

ð1Þ
til ð1� dljÞ�

(

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklq
ð1Þ
tklð1� dkidljÞ

)
� Ap1uiqujr,

a
ð2Þ
pijfd ¼

X8
t¼1

Xi

k¼c

bikApt½a
ð2Þ
tk0fd � a

ð2Þ
tkjfd ð1� dkiÞ� þ

Xj

l¼0

bjlBpt½a
ð2Þ
tclfd � a

ð2Þ
tilfd ð1� dljÞ�

(

þ
Xi

k¼c

Xj

l¼0

bikbjlCptkla
ð2Þ
tklfd ð1� dkidljÞ

)
,

b
ð2Þ

pijgd ¼
X8
t¼1

Xi

k¼c

bikApt½b
ð2Þ

tk0gd � b
ð2Þ

tkjgd ð1� dkiÞ� þ
Xj

l¼0

bjlBpt½b
ð2Þ

tclgd � b
ð2Þ

tilgd ð1� dljÞ�

(

þ
Xi

k¼c

Xj

l¼0

bikbjlCptklb
ð2Þ

tklgd ð1� dkidljÞ

)
,

q
ð2Þ
pij ¼

X8
t¼1

Xi

k¼c

bikApt½q
ð2Þ
tk0 � q

ð2Þ
tkjð1� dkiÞ� þ

Xj

l¼0

bjlBpt½q
ð2Þ
tcl � q

ð2Þ
til ð1� dljÞ�

(

þ
Xi

k¼c

Xj

l¼0

bikbjlCptklq
ð2Þ
tklð1� dkidljÞ

)
� Ap1uiqujr.
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